Keller-Segel, Fast-Diffusion and Functional Inequalities
نویسنده
چکیده
We will show how the critical mass classical Keller-Segel system and the critical displacement convex fast-diffusion equation in two dimensions are related. On one hand, the critical fast diffusion entropy functional helps to show global existence around equilibrium states of the critical mass Keller-Segel system. On the other hand, the critical fast diffusion flow allows to show functional inequalities such as the Logarithmic HLS inequality in simple terms who is essential in the behavior of the subcritical mass Keller-Segel system. HLS inequalities can also be recovered in several dimensions using this procedure. It is crucial the relation to the GNS inequalities obtained by DelPino and Dolbeault. This talk corresponds to two works in collaboration with E. Carlen and A. Blanchet, and with E. Carlen and M. Loss.
منابع مشابه
A functional framework for the Keller-Segel system: logarithmic Hardy-Littlewood-Sobolev and related spectral gap inequalities
This note is devoted to several inequalities deduced from a special form of the logarithmic Hardy-LittlewoodSobolev, which is well adapted to the characterization of stationary solutions of a Keller-Segel system written in self-similar variables, in case of a subcritical mass. For the corresponding evolution problem, such functional inequalities play an important role for identifying the rate o...
متن کاملFunctional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model
We investigate the long time behavior of the critical mass Patlak-Keller-Segel equation. This equation has a one parameter family of steady-state solutions ̺λ, λ > 0, with thick tails whose second moment is not bounded. We show that these steady state solutions are stable, and find basins of attraction for them using an entropy functional Hλ coming from the critical fast diffusion equation in R ...
متن کاملGlobal Existence and Finite Time Blow-Up for Critical Patlak-Keller-Segel Models with Inhomogeneous Diffusion
The L-critical parabolic-elliptic Patlak-Keller-Segel system is a classical model of chemotactic aggregation in micro-organisms well-known to have critical mass phenomena [10, 8]. In this paper we study this critical mass phenomenon in the context of Patlak-Keller-Segel models with spatially varying diffusivity and decay rate of the chemo-attractant. The primary tool for the proof of global exi...
متن کاملStability for a GNS inequality and the Log-HLS inequality, with application to the critical mass Keller-Segel equation
Starting from the quantitative stability result of Bianchi and Egnell for the 2-Sobolev inequality, we deduce several different stability results for a Gagliardo-Nirenberg-Sobolev inequality in the plane. Then, exploiting the connection between this inequality and a fast diffusion equation, we get stability for the Log-HLS inequality. Finally, using all these estimates, we prove a quantitative ...
متن کاملar X iv : 0 71 2 . 31 69 v 1 [ m at h . A P ] 1 9 D ec 2 00 7 The parabolic - parabolic Keller - Segel model in R 2 ∗
This paper is devoted mainly to the global existence problem for the two-dimensional parabolicparabolic Keller-Segel in the full space. We derive a critical mass threshold below which global existence is ensured. Using carefully energy methods and ad hoc functional inequalities we improve and extend previous results in this direction. The given threshold is supposed to be the optimal criterion,...
متن کامل